{"id":51800,"date":"2024-12-16T14:07:34","date_gmt":"2024-12-16T06:07:34","guid":{"rendered":"https:\/\/www.newtopchem.com\/?p=51800"},"modified":"2024-12-16T14:07:34","modified_gmt":"2024-12-16T06:07:34","slug":"bdmaee-as-a-ligand-for-transition-metal-catalysts-applications-and-effectiveness-evaluation","status":"publish","type":"post","link":"http:\/\/www.newtopchem.com\/archives\/51800","title":{"rendered":"BDMAEE as a Ligand for Transition Metal Catalysts: Applications and Effectiveness Evaluation","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
N,N-Bis(2-dimethylaminoethyl) ether (BDMAEE) has garnered attention in the field of transition metal catalysis due to its unique structural features that enable it to act as an effective ligand. Its ability to form stable complexes with various transition metals facilitates the design of highly active and selective catalysts for a wide range of organic transformations. This article delves into specific applications of BDMAEE as a ligand in transition metal catalysis, evaluates its effectiveness through experimental data, and discusses potential future developments.<\/p>\n
BDMAEE’s molecular formula is C8H20N2O, with a molecular weight of 146.23 g\/mol. The molecule features two tertiary amine functionalities (-N(CH\u2083)\u2082) linked via an ether oxygen atom, which can coordinate with metal centers to stabilize reactive intermediates or enhance catalytic activity.<\/p>\n
BDMAEE is a colorless liquid at room temperature, exhibiting moderate solubility in water but good solubility in many organic solvents. It has a boiling point around 185\u00b0C and a melting point of -45\u00b0C.<\/p>\n
Property<\/th>\n | Value<\/th>\n<\/tr>\n<\/thead>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Boiling Point<\/td>\n | ~185\u00b0C<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting Point<\/td>\n | -45\u00b0C<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density<\/td>\n | 0.937 g\/cm\u00b3 (at 20\u00b0C)<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Refractive Index<\/td>\n | nD 20 = 1.442<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\nMechanism of BDMAEE as a Ligand<\/h2>\n |
Metal Ion<\/th>\n | Coordination Mode<\/th>\n | Catalytic Application<\/th>\n<\/tr>\n<\/thead>\n | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Palladium (II)<\/td>\n | Bidentate<\/td>\n | Cross-coupling reactions<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||
Rhodium (I)<\/td>\n | Bridging<\/td>\n | Hydrogenation reactions<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||
Copper (II)<\/td>\n | Monodentate<\/td>\n | Cycloaddition reactions<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\nCase Study: Palladium-Catalyzed Suzuki Coupling Reaction<\/h3>\nApplication<\/strong>: Organic synthesis One of the most prominent applications of BDMAEE as a ligand is in cross-coupling reactions, where it significantly enhances the efficiency and selectivity of palladium-based catalysts.<\/p>\n Application<\/strong>: Pharmaceutical synthesis BDMAEE also plays a crucial role in hydrogenation reactions, particularly when used as a ligand for rhodium catalysts. It stabilizes the metal center and improves the rate of hydrogenation.<\/p>\n Application<\/strong>: Natural product synthesis In cycloaddition reactions, BDMAEE coordinates with copper ions to promote the formation of cyclic compounds with high diastereoselectivity.<\/p>\n Application<\/strong>: Polymer science Understanding the spectroscopic properties of BDMAEE-metal complexes helps confirm the successful formation of these species and assess their catalytic activity.<\/p>\n Application<\/strong>: Analytical chemistry Handling BDMAEE and BDMAEE-coordinated metal complexes requires adherence to specific guidelines due to potential irritant properties and reactivity concerns. Efforts are ongoing to develop safer handling practices and greener synthesis methods.<\/p>\n |