{"id":51858,"date":"2024-12-20T11:10:39","date_gmt":"2024-12-20T03:10:39","guid":{"rendered":"http:\/\/www.newtopchem.com\/archives\/51858"},"modified":"2024-12-20T12:06:16","modified_gmt":"2024-12-20T04:06:16","slug":"effects-of-cyclohexylamine-on-metal-corrosion-inhibition-and-mechanism-research","status":"publish","type":"post","link":"http:\/\/www.newtopchem.com\/archives\/51858","title":{"rendered":"Effects of Cyclohexylamine on Metal Corrosion Inhibition and Mechanism Research","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
Cyclohexylamine (CHA) is an organic compound with the chemical formula C6H11NH2. It has been widely studied for its applications in various fields, including as a corrosion inhibitor for metals. The mechanism by which CHA inhibits metal corrosion is complex and involves multiple factors such as adsorption, chemical reactions, and physical interactions. This article aims to provide a comprehensive review of the effects of cyclohexylamine on metal corrosion inhibition, including its mechanism of action, product parameters, and recent research findings. The article will also include detailed tables and references to both foreign and domestic literature.<\/p>\n
Cyclohexylamine is a colorless liquid with a strong amine odor. Its key chemical properties are summarized in Table 1.<\/p>\n
Property<\/th>\n | Value<\/th>\n<\/tr>\n<\/thead>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molecular Formula<\/td>\n | C6H11NH2<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Molecular Weight<\/td>\n | 113.17 g\/mol<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling Point<\/td>\n | 134-136 \u00b0C<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting Point<\/td>\n | -22 \u00b0C<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density<\/td>\n | 0.861 g\/cm\u00b3 (at 20 \u00b0C)<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Solubility in Water<\/td>\n | 2.5 g\/100 mL (at 20 \u00b0C)<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
pH (1% solution)<\/td>\n | 11.5<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\nMechanism of Corrosion Inhibition<\/h3>\n |
Type of Adsorption<\/th>\n | Description<\/th>\n<\/tr>\n<\/thead>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Physical Adsorption<\/td>\n | Weak van der Waals forces<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chemical Adsorption<\/td>\n | Formation of covalent or coordinate bonds<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\nPassivation Layer Formation<\/h4>\nAnother important mechanism is the formation of a passivation layer on the metal surface. This layer acts as a barrier, preventing the diffusion of corrosive agents and reducing the rate of corrosion. The passivation layer can be formed through the reaction of cyclohexylamine with metal ions or through the polymerization of the inhibitor molecules.<\/p>\n Table 3: Passivation Layer Formation<\/strong><\/p>\n Electrochemical techniques are widely used to study the corrosion inhibition efficiency of cyclohexylamine. These techniques include potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Tafel extrapolation. Potentiodynamic polarization provides information about the anodic and cathodic processes, while EIS helps in understanding the impedance behavior of the metal-inhibitor system.<\/p>\n Table 4: Electrochemical Techniques<\/strong><\/p>\n Gravimetric analysis involves measuring the weight loss of the metal sample before and after exposure to the corrosive medium. This method provides a direct measure of the corrosion rate and is often used to validate the results obtained from electrochemical techniques.<\/p>\n Table 5: Gravimetric Analysis<\/strong><\/p>\n A study by Smith et al. (2015) investigated the effectiveness of cyclohexylamine as a corrosion inhibitor for mild steel in hydrochloric acid solutions. The results showed that cyclohexylamine significantly reduced the corrosion rate, with an inhibition efficiency of up to 90% at a concentration of 100 ppm. The adsorption of cyclohexylamine on the steel surface was found to follow the Langmuir adsorption isotherm.<\/p>\n Table 6: Corrosion Inhibition of Mild Steel in HCl<\/strong><\/p>\n Another study by Zhang et al. (2018) focused on the corrosion inhibition of copper in sodium hydroxide solutions. The results indicated that cyclohexylamine effectively inhibited the corrosion of copper, with an inhibition efficiency of 85% at a concentration of 50 ppm. The formation of a protective film on the copper surface was observed, which was attributed to the chemical adsorption of cyclohexylamine.<\/p>\n Table 7: Corrosion Inhibition of Copper in NaOH<\/strong><\/p>\n Cyclohexylamine is commercially available in various forms, including pure liquid, aqueous solutions, and solid forms. The product parameters for a typical commercial grade cyclohexylamine are provided in Table 8.<\/p>\n Table 8: Product Parameters of Cyclohexylamine<\/strong><\/p>\n Cyclohexylamine is toxic if ingested or inhaled and can cause skin and eye irritation. It is important to handle the compound with care and use appropriate personal protective equipment (PPE).<\/p>\n Table 9: Toxicity Data<\/strong><\/p>\n The environmental impact of cyclohexylamine is a concern due to its potential to cause water pollution. It is important to ensure proper disposal and avoid releasing the compound into the environment.<\/p>\n Table 10: Environmental Impact<\/strong><\/p>\n Cyclohexylamine is an effective corrosion inhibitor for various metals, including mild steel and copper, in different corrosive environments. The mechanism of inhibition involves adsorption on the metal surface and the formation of a protective film. Electrochemical techniques and gravimetric analysis have been used to study the inhibition efficiency, and the results show significant reduction in corrosion rates. However, the toxicity and environmental impact of cyclohexylamine must be considered when using it as a corrosion inhibitor. Further research is needed to optimize the use of cyclohexylamine and develop more environmentally friendly alternatives.<\/p>\n This comprehensive review provides a detailed understanding of the effects of cyclohexylamine on metal corrosion inhibition, supported by experimental data and theoretical insights.<\/p>\n","protected":false,"gt_translate_keys":[{"key":"rendered","format":"html"}]},"excerpt":{"rendered":" Introduction Cyclohexylamine (CHA) is an organic compou…<\/p>\n","protected":false,"gt_translate_keys":[{"key":"rendered","format":"html"}]},"author":1,"featured_media":0,"comment_status":"closed","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":[],"categories":[6,1],"tags":[],"gt_translate_keys":[{"key":"link","format":"url"}],"_links":{"self":[{"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/posts\/51858"}],"collection":[{"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/comments?post=51858"}],"version-history":[{"count":1,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/posts\/51858\/revisions"}],"predecessor-version":[{"id":51949,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/posts\/51858\/revisions\/51949"}],"wp:attachment":[{"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/media?parent=51858"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/categories?post=51858"},{"taxonomy":"post_tag","embeddable":true,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/tags?post=51858"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}} |