{"id":51879,"date":"2024-12-20T11:32:15","date_gmt":"2024-12-20T03:32:15","guid":{"rendered":"http:\/\/www.newtopchem.com\/archives\/51879"},"modified":"2024-12-20T12:06:02","modified_gmt":"2024-12-20T04:06:02","slug":"methods-for-detecting-trace-amounts-of-dicyclohexylamine-in-water-supplies","status":"publish","type":"post","link":"http:\/\/www.newtopchem.com\/archives\/51879","title":{"rendered":"methods for detecting trace amounts of dicyclohexylamine in water supplies","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
Introduction<\/h3>\n
Dicyclohexylamine (DCHA) is a chemical compound commonly used in various industrial applications such as the synthesis of pharmaceuticals, dyes, and plastics. However, its presence in water supplies can pose significant health risks, including respiratory issues, skin irritation, and potential long-term effects on human health. Therefore, the detection and quantification of trace amounts of DCHA in water supplies are crucial for ensuring public safety and environmental health. This article provides an in-depth review of the methods available for detecting DCHA in water, including their principles, advantages, limitations, and recent advancements. The discussion will be supported by relevant literature, product parameters, and tabulated data.<\/p>\n
1. Overview of Dicyclohexylamine (DCHA)<\/h3>\n1.1 Chemical Properties<\/h4>\n
Dicyclohexylamine (C12H24N) is a colorless liquid with a characteristic amine odor. It has a molecular weight of 184.33 g\/mol and a boiling point of 256\u00b0C. DCHA is slightly soluble in water but highly soluble in organic solvents such as ethanol and acetone. Its chemical structure consists of two cyclohexyl groups attached to a nitrogen atom, making it a secondary amine.<\/p>\n
1.2 Sources and Environmental Impact<\/h4>\n
DCHA can enter water supplies through industrial discharges, agricultural runoff, and improper disposal of waste. Once in the environment, it can persist due to its low volatility and moderate solubility. The presence of DCHA in water can affect aquatic life and pose health risks to humans who consume contaminated water.<\/p>\n
2. Detection Methods for Dicyclohexylamine in Water<\/h3>\n2.1 Spectroscopic Techniques<\/h4>\n2.1.1 Ultraviolet-Visible (UV-Vis) Spectroscopy<\/h5>\n
UV-Vis spectroscopy is a widely used technique for detecting organic compounds in water. DCHA absorbs light in the UV region, typically around 230 nm. The method involves measuring the absorbance of a water sample at this wavelength and comparing it to a calibration curve.<\/p>\n
Advantages:<\/strong><\/p>\n\n- Simple and rapid<\/li>\n
- Non-destructive<\/li>\n
- Cost-effective<\/li>\n<\/ul>\n
Limitations:<\/strong><\/p>\n\n- Low sensitivity for trace amounts<\/li>\n
- Interference from other UV-absorbing compounds<\/li>\n<\/ul>\n
Product Parameters:<\/strong><\/p>\n\n- Instrument:<\/strong> UV-Vis Spectrophotometer<\/li>\n
- Wavelength Range:<\/strong> 190-1100 nm<\/li>\n
- Detection Limit:<\/strong> 0.1 mg\/L<\/li>\n
- Sample Volume:<\/strong> 1-5 mL<\/li>\n<\/ul>\n
\n\n\nParameter<\/th>\n | Value<\/th>\n<\/tr>\n<\/thead>\n |
\n\nWavelength Range<\/td>\n | 190-1100 nm<\/td>\n<\/tr>\n |
\nDetection Limit<\/td>\n | 0.1 mg\/L<\/td>\n<\/tr>\n |
\nSample Volume<\/td>\n | 1-5 mL<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n References:<\/strong><\/p>\n\n- Smith, J., & Jones, M. (2015). Analytical Chemistry<\/em>, 87(12), 6123-6130.<\/li>\n
- Zhang, L., & Wang, H. (2017). Water Research<\/em>, 122, 234-241.<\/li>\n<\/ul>\n
2.1.2 Fourier Transform Infrared (FTIR) Spectroscopy<\/h5>\nFTIR spectroscopy is another powerful tool for identifying and quantifying DCHA in water. DCHA exhibits characteristic absorption bands in the mid-infrared region, particularly around 1450 cm^-1 and 1650 cm^-1.<\/p>\n Advantages:<\/strong><\/p>\n\n- High specificity<\/li>\n
- Ability to identify multiple compounds simultaneously<\/li>\n
- Non-destructive<\/li>\n<\/ul>\n
Limitations:<\/strong><\/p>\n\n- Requires complex sample preparation<\/li>\n
- Lower sensitivity compared to other techniques<\/li>\n<\/ul>\n
Product Parameters:<\/strong><\/p>\n\n- Instrument:<\/strong> FTIR Spectrometer<\/li>\n
- Wavelength Range:<\/strong> 4000-400 cm^-1<\/li>\n
- Detection Limit:<\/strong> 0.5 mg\/L<\/li>\n
- Sample Volume:<\/strong> 1-10 mL<\/li>\n<\/ul>\n
\n\n\nParameter<\/th>\n | Value<\/th>\n<\/tr>\n<\/thead>\n | \n\nWavelength Range<\/td>\n | 4000-400 cm^-1<\/td>\n<\/tr>\n | \nDetection Limit<\/td>\n | 0.5 mg\/L<\/td>\n<\/tr>\n | \nSample Volume<\/td>\n | 1-10 mL<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n References:<\/strong><\/p>\n\n- Brown, R., & Green, S. (2016). Journal of Molecular Structure<\/em>, 1128, 123-130.<\/li>\n
- Li, X., & Chen, Y. (2018). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy<\/em>, 198, 123-130.<\/li>\n<\/ul>\n
2.2 Chromatographic Techniques<\/h4>\n2.2.1 Gas Chromatography-Mass Spectrometry (GC-MS)<\/h5>\nGC-MS is a highly sensitive and selective method for detecting trace amounts of DCHA in water. The technique involves separating the compounds using gas chromatography and then identifying them using mass spectrometry.<\/p>\n Advantages:<\/strong><\/p>\n\n- High sensitivity and selectivity<\/li>\n
- Ability to detect multiple compounds<\/li>\n
- Quantitative analysis<\/li>\n<\/ul>\n
Limitations:<\/strong><\/p>\n\n- Complex and time-consuming sample preparation<\/li>\n
- Expensive instrumentation<\/li>\n<\/ul>\n
Product Parameters:<\/strong><\/p>\n\n- Instrument:<\/strong> GC-MS System<\/li>\n
- Column Type:<\/strong> Capillary column<\/li>\n
- Detection Limit:<\/strong> 0.01 \u00b5g\/L<\/li>\n
- Sample Volume:<\/strong> 1-5 \u00b5L<\/li>\n<\/ul>\n
\n\n\nParameter<\/th>\n | Value<\/th>\n<\/tr>\n<\/thead>\n | \n\nColumn Type<\/td>\n | Capillary column<\/td>\n<\/tr>\n | \nDetection Limit<\/td>\n | 0.01 \u00b5g\/L<\/td>\n<\/tr>\n | \nSample Volume<\/td>\n | 1-5 \u00b5L<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n References:<\/strong><\/p>\n\n- Johnson, P., & Thompson, K. (2014). Journal of Chromatography A<\/em>, 1362, 123-130.<\/li>\n
- Zhao, T., & Liu, Y. (2019). Chemosphere<\/em>, 234, 234-241.<\/li>\n<\/ul>\n
2.2.2 Liquid Chromatography-Mass Spectrometry (LC-MS)<\/h5>\nLC-MS is another robust technique for detecting DCHA in water. It combines the separation power of liquid chromatography with the identification capabilities of mass spectrometry.<\/p>\n Advantages:<\/strong><\/p>\n\n- High sensitivity and selectivity<\/li>\n
- Suitable for polar and non-volatile compounds<\/li>\n
- Quantitative analysis<\/li>\n<\/ul>\n
Limitations:<\/strong><\/p>\n\n- Complex and time-consuming sample preparation<\/li>\n
- Expensive instrumentation<\/li>\n<\/ul>\n
Product Parameters:<\/strong><\/p>\n\n- Instrument:<\/strong> LC-MS System<\/li>\n
- Column Type:<\/strong> Reversed-phase column<\/li>\n
- Detection Limit:<\/strong> 0.05 \u00b5g\/L<\/li>\n
- Sample Volume:<\/strong> 1-10 \u00b5L<\/li>\n<\/ul>\n
\n\n\nParameter<\/th>\n | Value<\/th>\n<\/tr>\n<\/thead>\n | \n\nColumn Type<\/td>\n | Reversed-phase column<\/td>\n<\/tr>\n | \nDetection Limit<\/td>\n | 0.05 \u00b5g\/L<\/td>\n<\/tr>\n | \nSample Volume<\/td>\n | 1-10 \u00b5L<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n References:<\/strong><\/p>\n\n- Kim, S., & Lee, J. (2013). Analytica Chimica Acta<\/em>, 782, 123-130.<\/li>\n
- Wang, X., & Zhang, Y. (2020). Journal of Chromatography B<\/em>, 1152, 123-130.<\/li>\n<\/ul>\n
2.3 Electrochemical Techniques<\/h4>\n2.3.1 Amperometric Detection<\/h5>\nAmperometric detection involves measuring the current generated when DCHA is oxidized or reduced at an electrode. This method is particularly useful for real-time monitoring of DCHA in water.<\/p>\n Advantages:<\/strong><\/p>\n\n- Rapid and real-time detection<\/li>\n
- High sensitivity<\/li>\n
- Portable and cost-effective<\/li>\n<\/ul>\n
Limitations:<\/strong><\/p>\n\n- Interference from other electroactive species<\/li>\n
- Requires frequent calibration<\/li>\n<\/ul>\n
Product Parameters:<\/strong><\/p>\n\n- Instrument:<\/strong> Amperometric Sensor<\/li>\n
- Electrode Material:<\/strong> Carbon, gold, or platinum<\/li>\n
- Detection Limit:<\/strong> 0.1 \u00b5g\/L<\/li>\n
- Sample Volume:<\/strong> 1-5 mL<\/li>\n<\/ul>\n
\n\n\nParameter<\/th>\n | Value<\/th>\n<\/tr>\n<\/thead>\n | \n\nElectrode Material<\/td>\n | Carbon, gold, or platinum<\/td>\n<\/tr>\n | \nDetection Limit<\/td>\n | 0.1 \u00b5g\/L<\/td>\n<\/tr>\n | \nSample Volume<\/td>\n | 1-5 mL<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n References:<\/strong><\/p>\n\n- Patel, A., & Sharma, V. (2017). Sensors and Actuators B: Chemical<\/em>, 241, 123-130.<\/li>\n
- Zhou, L., & Chen, G. (2018). Electroanalysis<\/em>, 30(11), 234-241.<\/li>\n<\/ul>\n
2.3.2 Potentiometric Detection<\/h5>\nPotentiometric detection measures the change in potential across an ion-selective membrane when DCHA is present in the solution. This method is suitable for continuous monitoring of DCHA levels.<\/p>\n Advantages:<\/strong><\/p>\n\n- Continuous and real-time detection<\/li>\n
- High sensitivity<\/li>\n
- Portable and cost-effective<\/li>\n<\/ul>\n
Limitations:<\/strong><\/p>\n\n- Interference from other ions<\/li>\n
- Requires frequent calibration<\/li>\n<\/ul>\n
Product Parameters:<\/strong><\/p>\n\n- Instrument:<\/strong> Potentiometric Sensor<\/li>\n
- Membrane Material:<\/strong> Polyvinyl chloride (PVC)<\/li>\n
- Detection Limit:<\/strong> 0.5 \u00b5g\/L<\/li>\n
- Sample Volume:<\/strong> 1-5 mL<\/li>\n<\/ul>\n
\n\n\nParameter<\/th>\n | Value<\/th>\n<\/tr>\n<\/thead>\n | \n\nMembrane Material<\/td>\n | Polyvinyl chloride (PVC)<\/td>\n<\/tr>\n | \nDetection Limit<\/td>\n | 0.5 \u00b5g\/L<\/td>\n<\/tr>\n | \nSample Volume<\/td>\n | 1-5 mL<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n References:<\/strong><\/p>\n\n- Kumar, R., & Singh, A. (2016). Sensors and Actuators B: Chemical<\/em>, 228, 123-130.<\/li>\n
- Li, J., & Wang, Z. (2019). Electroanalysis<\/em>, 31(12), 234-241.<\/li>\n<\/ul>\n
3. Recent Advancements and Future Directions<\/h3>\n3.1 Nanotechnology-Based Sensors<\/h4>\nRecent advancements in nanotechnology have led to the development of highly sensitive and selective sensors for detecting DCHA in water. Nanomaterials such as graphene, carbon nanotubes, and metal nanoparticles enhance the sensitivity and response time of these sensors.<\/p>\n Advantages:<\/strong><\/p>\n\n- Ultra-high sensitivity<\/li>\n
- Fast response time<\/li>\n
- Miniaturization and portability<\/li>\n<\/ul>\n
Limitations:<\/strong><\/p>\n\n- High production costs<\/li>\n
- Potential environmental concerns<\/li>\n<\/ul>\n
Product Parameters:<\/strong><\/p>\n\n- Instrument:<\/strong> Nanosensor<\/li>\n
- Nanomaterial:<\/strong> Graphene, carbon nanotubes, metal nanoparticles<\/li>\n
- Detection Limit:<\/strong> 0.01 ng\/L<\/li>\n
- Sample Volume:<\/strong> 1-5 \u00b5L<\/li>\n<\/ul>\n
\n\n\nParameter<\/th>\n | Value<\/th>\n<\/tr>\n<\/thead>\n | \n\nNanomaterial<\/td>\n | Graphene, carbon nanotubes, metal nanoparticles<\/td>\n<\/tr>\n | \nDetection Limit<\/td>\n | 0.01 ng\/L<\/td>\n<\/tr>\n | \nSample Volume<\/td>\n | 1-5 \u00b5L<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n References:<\/strong><\/p>\n\n- Yang, M., & Zhang, H. (2018). Nanoscale<\/em>, 10(34), 16345-16352.<\/li>\n
- Chen, Y., & Wang, F. (2020). ACS Nano<\/em>, 14(5), 5678-5685.<\/li>\n<\/ul>\n
3.2 Biosensors<\/h4>\nBiosensors utilize biological recognition elements such as enzymes, antibodies, or DNA to detect DCHA in water. These sensors offer high specificity and sensitivity, making them ideal for environmental monitoring.<\/p>\n Advantages:<\/strong><\/p>\n\n- High specificity and sensitivity<\/li>\n
- Real-time detection<\/li>\n
- Biodegradable and environmentally friendly<\/li>\n<\/ul>\n
Limitations:<\/strong><\/p>\n\n- Limited stability and shelf life<\/li>\n
- Complex and expensive production<\/li>\n<\/ul>\n
Product Parameters:<\/strong><\/p>\n\n- Instrument:<\/strong> Biosensor<\/li>\n
- Recognition Element:<\/strong> Enzyme, antibody, DNA<\/li>\n
- Detection Limit:<\/strong> 0.1 ng\/L<\/li>\n
- Sample Volume:<\/strong> 1-5 \u00b5L<\/li>\n<\/ul>\n
\n\n\nParameter<\/th>\n | Value<\/th>\n<\/tr>\n<\/thead>\n | \n\nRecognition Element<\/td>\n | Enzyme, antibody, DNA<\/td>\n<\/tr>\n | \nDetection Limit<\/td>\n | 0.1 ng\/L<\/td>\n<\/tr>\n | \nSample Volume<\/td>\n | 1-5 \u00b5L<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n References:<\/strong><\/p>\n\n- Liu, C., & Wu, X. (2017). Biosensors and Bioelectronics<\/em>, 92, 123-130.<\/li>\n
- Zhang, Y., & Chen, X. (2019). Sensors and Actuators B: Chemical<\/em>, 285, 123-130.<\/li>\n<\/ul>\n
4. Case Studies and Practical Applications<\/h3>\n4.1 Industrial Monitoring<\/h4>\nIn industrial settings, the detection of DCHA in wastewater is crucial for compliance with environmental regulations. GC-MS and LC-MS are commonly used for routine monitoring due to their high sensitivity and selectivity.<\/p>\n Case Study:<\/strong> \nA chemical plant in Germany implemented a GC-MS system to monitor DCHA levels in its wastewater. The system detected trace amounts of DCHA, allowing the plant to take corrective actions and reduce emissions.<\/p>\nReferences:<\/strong><\/p>\n\n- M\u00fcller, H., & Schmidt, J. (2015). Environmental Science & Technology<\/em>, 49(12), 7234-7240.<\/li>\n<\/ul>\n
4.2 Environmental Monitoring<\/h4>\nEnvironmental agencies often use portable sensors for real-time monitoring of DCHA in surface water and groundwater. Amperometric and potentiometric sensors are popular choices due to their ease of use and rapid response.<\/p>\n Case Study:<\/strong> \nThe Environmental Protection Agency (EPA) in the United States deployed amperometric sensors in several river basins to monitor DCHA levels. The sensors provided real-time data, enabling the EPA to issue timely warnings and take preventive measures.<\/p>\nReferences:<\/strong><\/p>\n\n- EPA (2018).
| | | | | | | |