Aluminum-based<\/td>\n | Aluminum<\/td>\n | Al(acac)3 (Aluminum acetylacetonate)<\/td>\n | Alfacat 717, Alfacat 718<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n2.2 Physical Properties<\/h5>\nThe physical properties of polyurethane metal catalysts vary depending on the type of metal and the specific compound. Table 2 outlines the key physical properties of the catalysts listed in Table 1.<\/p>\n\n\n\n\n\n\n\n\n Catalyst Type<\/strong><\/th>\n | Appearance<\/strong><\/th>\n | Melting Point (\u00b0C)<\/strong><\/th>\n | Boiling Point (\u00b0C)<\/strong><\/th>\n | Density (g\/cm\u00b3)<\/strong><\/th>\n | Solubility in Water<\/strong><\/th>\n<\/tr>\n<\/thead>\n |
---|
Tin-based<\/td>\n | Colorless to light yellow liquid<\/td>\n | 100-120<\/td>\n | 250-280<\/td>\n | 1.05-1.10<\/td>\n | Insoluble<\/td>\n<\/tr>\n | Zinc-based<\/td>\n | White to off-white solid<\/td>\n | 110-130<\/td>\n | 280-300<\/td>\n | 1.20-1.30<\/td>\n | Slightly soluble<\/td>\n<\/tr>\n | Bismuth-based<\/td>\n | Pale yellow to brown liquid<\/td>\n | 120-140<\/td>\n | 300-320<\/td>\n | 1.30-1.40<\/td>\n | Insoluble<\/td>\n<\/tr>\n | Aluminum-based<\/td>\n | White to pale yellow solid<\/td>\n | 150-170<\/td>\n | 350-370<\/td>\n | 1.40-1.50<\/td>\n | Insoluble<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n2.3 Reactivity and Stability<\/h5>\nPolyurethane metal catalysts are generally stable under normal storage conditions but can react with moisture, acids, and certain organic compounds. Table 3 provides an overview of the reactivity and stability of different types of catalysts.<\/p>\n\n\n\n\n\n\n\n\n Catalyst Type<\/strong><\/th>\n | Reactivity with Moisture<\/strong><\/th>\n | Reactivity with Acids<\/strong><\/th>\n | Reactivity with Organic Compounds<\/strong><\/th>\n | Stability at Elevated Temperatures<\/strong><\/th>\n<\/tr>\n<\/thead>\n |
---|
Tin-based<\/td>\n | Moderate<\/td>\n | High<\/td>\n | Low<\/td>\n | Stable up to 200\u00b0C<\/td>\n<\/tr>\n | Zinc-based<\/td>\n | Low<\/td>\n | Moderate<\/td>\n | Low<\/td>\n | Stable up to 250\u00b0C<\/td>\n<\/tr>\n | Bismuth-based<\/td>\n | Low<\/td>\n | Low<\/td>\n | Low<\/td>\n | Stable up to 300\u00b0C<\/td>\n<\/tr>\n | Aluminum-based<\/td>\n | Moderate<\/td>\n | High<\/td>\n | Moderate<\/td>\n | Stable up to 350\u00b0C<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n3. Potential Hazards<\/h4>\n3.1 Health Hazards<\/h5>\nPolyurethane metal catalysts can pose significant health risks if not handled properly. The primary routes of exposure are inhalation, skin contact, and ingestion. Table 4 summarizes the potential health effects associated with each type of catalyst.<\/p>\n\n\n\n\n\n\n\n\n Catalyst Type<\/strong><\/th>\n | Inhalation<\/strong><\/th>\n | Skin Contact<\/strong><\/th>\n | Ingestion<\/strong><\/th>\n | Eye Contact<\/strong><\/th>\n<\/tr>\n<\/thead>\n |
---|
Tin-based<\/td>\n | Respiratory irritation, lung damage<\/td>\n | Skin irritation, dermatitis<\/td>\n | Gastrointestinal irritation, liver damage<\/td>\n | Eye irritation, corneal damage<\/td>\n<\/tr>\n | Zinc-based<\/td>\n | Respiratory irritation<\/td>\n | Skin irritation<\/td>\n | Gastrointestinal irritation<\/td>\n | Eye irritation<\/td>\n<\/tr>\n | Bismuth-based<\/td>\n | Respiratory irritation<\/td>\n | Skin irritation<\/td>\n | Gastrointestinal irritation<\/td>\n | Eye irritation<\/td>\n<\/tr>\n | Aluminum-based<\/td>\n | Respiratory irritation<\/td>\n | Skin irritation<\/td>\n | Gastrointestinal irritation<\/td>\n | Eye irritation<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n3.2 Environmental Hazards<\/h5>\nPolyurethane metal catalysts can also have adverse effects on the environment if released into water bodies or soil. Table 5 outlines the potential environmental impacts of these catalysts.<\/p>\n\n\n\n\n\n\n\n\n Catalyst Type<\/strong><\/th>\n | Water Contamination<\/strong><\/th>\n | Soil Contamination<\/strong><\/th>\n | Air Pollution<\/strong><\/th>\n | Ecotoxicity<\/strong><\/th>\n<\/tr>\n<\/thead>\n |
---|
Tin-based<\/td>\n | Toxic to aquatic life<\/td>\n | Bioaccumulation in soil<\/td>\n | Formation of toxic fumes<\/td>\n | Highly toxic to fish and invertebrates<\/td>\n<\/tr>\n | Zinc-based<\/td>\n | Moderately toxic to aquatic life<\/td>\n | Bioaccumulation in soil<\/td>\n | Formation of dust particles<\/td>\n | Toxic to plants and microorganisms<\/td>\n<\/tr>\n | Bismuth-based<\/td>\n | Low toxicity to aquatic life<\/td>\n | Low bioaccumulation<\/td>\n | Low air pollution risk<\/td>\n | Low ecotoxicity<\/td>\n<\/tr>\n | Aluminum-based<\/td>\n | Low toxicity to aquatic life<\/td>\n | Low bioaccumulation<\/td>\n | Low air pollution risk<\/td>\n | Low ecotoxicity<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n4. Personal Protective Equipment (PPE)<\/h4>\nTo minimize the risks associated with handling polyurethane metal catalysts, it is essential to use appropriate personal protective equipment (PPE). Table 6 provides recommendations for PPE based on the type of catalyst and the task being performed.<\/p>\n\n\n\n\n\n\n\n Task<\/strong><\/th>\n | Respiratory Protection<\/strong><\/th>\n | Hand Protection<\/strong><\/th>\n | Eye Protection<\/strong><\/th>\n | Skin Protection<\/strong><\/th>\n<\/tr>\n<\/thead>\n |
---|
Handling bulk quantities<\/td>\n | Full-face respirator with organic vapor cartridges<\/td>\n | Butyl rubber gloves<\/td>\n | Goggles or face shield<\/td>\n | Chemical-resistant coveralls<\/td>\n<\/tr>\n | Small-scale operations<\/td>\n | Half-face respirator with organic vapor cartridges<\/td>\n | Nitrile gloves<\/td>\n | Safety glasses<\/td>\n | Lab coat or apron<\/td>\n<\/tr>\n | Maintenance and cleaning<\/td>\n | Full-face respirator with particulate filters<\/td>\n | Neoprene gloves<\/td>\n | Goggles or face shield<\/td>\n | Chemical-resistant coveralls<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n5. Storage and Transportation<\/h4>\n5.1 Storage Requirements<\/h5>\nProper storage of polyurethane metal catalysts is critical to maintaining their effectiveness and preventing accidents. Table 7 provides guidelines for storing these catalysts safely.<\/p>\n\n\n\n\n\n\n\n\n Catalyst Type<\/strong><\/th>\n | Storage Temperature (\u00b0C)<\/strong><\/th>\n | Humidity Control<\/strong><\/th>\n | Ventilation<\/strong><\/th>\n | Compatibility with Other Materials<\/strong><\/th>\n<\/tr>\n<\/thead>\n |
---|
Tin-based<\/td>\n | -10 to 30<\/td>\n | Dry conditions<\/td>\n | Well-ventilated area<\/td>\n | Store separately from acids and oxidizers<\/td>\n<\/tr>\n | Zinc-based<\/td>\n | -10 to 30<\/td>\n | Dry conditions<\/td>\n | Well-ventilated area<\/td>\n | Store separately from acids and oxidizers<\/td>\n<\/tr>\n | Bismuth-based<\/td>\n | -10 to 30<\/td>\n | Dry conditions<\/td>\n | Well-ventilated area<\/td>\n | Store separately from acids and oxidizers<\/td>\n<\/tr>\n | Aluminum-based<\/td>\n | -10 to 30<\/td>\n | Dry conditions<\/td>\n | Well-ventilated area<\/td>\n | Store separately from acids and oxidizers<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n5.2 Transportation Requirements<\/h5>\nWhen transporting polyurethane metal catalysts, it is important to comply with local, national, and international regulations. Table 8 provides guidance on the transportation of these catalysts.<\/p>\n\n\n\n\n\n\n\n\n Catalyst Type<\/strong><\/th>\n | UN Number<\/strong><\/th>\n | Hazard Class<\/strong><\/th>\n | Packaging Group<\/strong><\/th>\n | Labeling Requirements<\/strong><\/th>\n<\/tr>\n<\/thead>\n |
---|
Tin-based<\/td>\n | UN 2253<\/td>\n | Class 6.1 (Poisonous)<\/td>\n | II<\/td>\n | Poison label, hazard statement<\/td>\n<\/tr>\n | Zinc-based<\/td>\n | UN 3082<\/td>\n | Class 8 (Corrosive)<\/td>\n | III<\/td>\n | Corrosive label, hazard statement<\/td>\n<\/tr>\n | Bismuth-based<\/td>\n | UN 3082<\/td>\n | Class 8 (Corrosive)<\/td>\n | III<\/td>\n | Corrosive label, hazard statement<\/td>\n<\/tr>\n | Aluminum-based<\/td>\n | UN 3082<\/td>\n | Class 8 (Corrosive)<\/td>\n | III<\/td>\n | Corrosive label, hazard statement<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n6. Emergency Response Procedures<\/h4>\n6.1 Spill Response<\/h5>\nIn the event of a spill, it is important to act quickly to contain and clean up the affected area. Table 9 provides guidelines for responding to spills of polyurethane metal catalysts.<\/p>\n\n\n\n\n\n\n\n\n Catalyst Type<\/strong><\/th>\n | Immediate Actions<\/strong><\/th>\n | Containment Methods<\/strong><\/th>\n | Cleanup Procedures<\/strong><\/th>\n | Disposal Methods<\/strong><\/th>\n<\/tr>\n<\/thead>\n |
---|
Tin-based<\/td>\n | Evacuate area, ventilate<\/td>\n | Use absorbent materials<\/td>\n | Neutralize with sodium bicarbonate<\/td>\n | Dispose of as hazardous waste<\/td>\n<\/tr>\n | Zinc-based<\/td>\n | Evacuate area, ventilate<\/td>\n | Use absorbent materials<\/td>\n | Neutralize with sodium bicarbonate<\/td>\n | Dispose of as hazardous waste<\/td>\n<\/tr>\n | Bismuth-based<\/td>\n | Evacuate area, ventilate<\/td>\n | Use absorbent materials<\/td>\n | Neutralize with sodium bicarbonate<\/td>\n | Dispose of as hazardous waste<\/td>\n<\/tr>\n | Aluminum-based<\/td>\n | Evacuate area, ventilate<\/td>\n | Use absorbent materials<\/td>\n | Neutralize with sodium bicarbonate<\/td>\n | Dispose of as hazardous waste<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n6.2 Fire Response<\/h5>\nPolyurethane metal catalysts are generally not flammable, but they can release toxic fumes when exposed to high temperatures. Table 10 provides guidelines for responding to fires involving these catalysts.<\/p>\n\n\n\n\n\n\n\n\n Catalyst Type<\/strong><\/th>\n | Extinguishing Media<\/strong><\/th>\n | Special Precautions<\/strong><\/th>\n | Evacuation Distance<\/strong><\/th>\n | Post-Fire Cleanup<\/strong><\/th>\n<\/tr>\n<\/thead>\n |
---|
Tin-based<\/td>\n | Dry chemical, foam, CO2<\/td>\n | Avoid water, use dry chemicals<\/td>\n | 50 meters<\/td>\n | Ventilate area, neutralize residues<\/td>\n<\/tr>\n | Zinc-based<\/td>\n | Dry chemical, foam, CO2<\/td>\n | Avoid water, use dry chemicals<\/td>\n | 50 meters<\/td>\n | Ventilate area, neutralize residues<\/td>\n<\/tr>\n | Bismuth-based<\/td>\n | Dry chemical, foam, CO2<\/td>\n | Avoid water, use dry chemicals<\/td>\n | 50 meters<\/td>\n | Ventilate area, neutralize residues<\/td>\n<\/tr>\n | Aluminum-based<\/td>\n | Dry chemical, foam, CO2<\/td>\n | Avoid water, use dry chemicals<\/td>\n | 50 meters<\/td>\n | Ventilate area, neutralize residues<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n7. Environmental Considerations<\/h4>\n7.1 Waste Disposal<\/h5>\nProper disposal of polyurethane metal catalysts is essential to prevent environmental contamination. Table 11 provides guidelines for the disposal of these catalysts.<\/p>\n\n\n\n\n\n\n\n\n Catalyst Type<\/strong><\/th>\n | Disposal Method<\/strong><\/th>\n | Regulatory Requirements<\/strong><\/th>\n | Pre-Treatment<\/strong><\/th>\n | Final Disposal Site<\/strong><\/th>\n<\/tr>\n<\/thead>\n |
---|
Tin-based<\/td>\n | Incineration or landfill<\/td>\n | EPA RCRA, EU Directive 2008\/98\/EC<\/td>\n | Neutralize with sodium bicarbonate<\/td>\n | Hazardous waste facility<\/td>\n<\/tr>\n | Zinc-based<\/td>\n | Incineration or landfill<\/td>\n | EPA RCRA, EU Directive 2008\/98\/EC<\/td>\n | Neutralize with sodium bicarbonate<\/td>\n | Hazardous waste facility<\/td>\n<\/tr>\n | Bismuth-based<\/td>\n | Incineration or landfill<\/td>\n | EPA RCRA, EU Directive 2008\/98\/EC<\/td>\n | Neutralize with sodium bicarbonate<\/td>\n | Hazardous waste facility<\/td>\n<\/tr>\n | Aluminum-based<\/td>\n | Incineration or landfill<\/td>\n | EPA RCRA, EU Directive 2008\/98\/EC<\/td>\n | Neutralize with sodium bicarbonate<\/td>\n | Hazardous waste facility<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n7.2 Recycling and Reuse<\/h5>\nSome polyurethane metal catalysts can be recycled or reused, depending on the specific application and the condition of the catalyst. Table 12 provides information on recycling and reuse options for these catalysts.<\/p>\n\n\n\n\n\n\n\n\n Catalyst Type<\/strong><\/th>\n | Recycling Potential<\/strong><\/th>\n | Reuse Potential<\/strong><\/th>\n | Economic Viability<\/strong><\/th>\n | Environmental Benefits<\/strong><\/th>\n<\/tr>\n<\/thead>\n |
---|
Tin-based<\/td>\n | Limited<\/td>\n | Limited<\/td>\n | Moderate<\/td>\n | Reduces waste, conserves resources<\/td>\n<\/tr>\n | Zinc-based<\/td>\n | Moderate<\/td>\n | Moderate<\/td>\n | High<\/td>\n | Reduces waste, conserves resources<\/td>\n<\/tr>\n | Bismuth-based<\/td>\n | High<\/td>\n | High<\/td>\n | High<\/td>\n | Reduces waste, conserves resources<\/td>\n<\/tr>\n | Aluminum-based<\/td>\n | Moderate<\/td>\n | Moderate<\/td>\n | High<\/td>\n | Reduces waste, conserves resources<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n8. Conclusion<\/h4>\nPolyurethane metal catalysts are essential for the production of high-quality polyurethane products, but they must be handled with care to ensure the safety of workers and the protection of the environment. This guide has provided detailed information on the product parameters, potential hazards, personal protective equipment, storage and transportation requirements, emergency response procedures, and environmental considerations associated with these catalysts. By following these guidelines, users can minimize the risks associated with polyurethane metal catalyst applications and ensure compliance with relevant regulations.<\/p>\n |
|
|
|
|
|
|
|
|
|
|
|