\nTMR-2 Catalyst<\/td>\n | 22-32<\/td>\n | 2.5-3.0<\/td>\n | 55-96<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n From the cost of 9727 catalyst, the unit cost is slightly higher than that of DMDEE and DABCO, but due to its low usage, the overall cost is relatively low. Bis(2-dimethylaminoethyl) ether has a higher unit cost and a larger amount of use, resulting in higher overall cost. The unit cost and usage of TMR-2 are high, and the overall cost is high. Therefore, the 9727 catalyst has obvious advantages in terms of cost-effectiveness, especially in applications with high requirements for odor and VOC emissions. <\/p>\n 9727 Catalyst Application Cases<\/h3>\n9727 catalyst has been widely used in many fields due to its excellent catalytic properties and environmentally friendly characteristics. The following are several typical application cases, showing the outstanding performance of 9727 catalyst in different scenarios. <\/p>\n 1. Furniture Manufacturing<\/h4>\nIn the furniture manufacturing industry, polyurethane foam is widely used in filling materials for sofas, mattresses, seats and other products. Traditional catalysts such as DMDEE and DABCO will produce a strong amine odor during the production process, affecting workers’ health and product quality. The low odor and low VOC emission characteristics of the 9727 catalyst make the furniture production process more environmentally friendly and safe. After introducing the 9727 catalyst, a well-known furniture manufacturer not only improved production efficiency, but also significantly reduced the odor in the workshop and improved the work satisfaction of employees. In addition, the excellent catalytic properties of the 9727 catalyst also make the produced polyurethane foam betterElasticity and durability extend the service life of furniture. <\/p>\n 2. Car interior<\/h4>\nAutomotive interior materials have strict requirements on odor and VOC emissions, especially for luxury models and electric vehicles. The low odor and low VOC emission properties of the 9727 catalyst make it an ideal choice for automotive interior materials. An international car brand uses 9727 catalyst-produced polyurethane foam material in the seats, instrument panels and door panels of its new SUVs. Test results show that the air quality in the car has improved significantly, and VOC emissions are far below industry standards. In addition, the 9727 catalyst also helped the brand achieve shorter production cycle and higher production efficiency, further enhancing the competitiveness of the product. <\/p>\n 3. Building insulation materials<\/h4>\nBuilding insulation materials are one of the important application areas of polyurethane foam. The application of 9727 catalyst in building insulation materials can not only improve the insulation performance of the material, but also effectively reduce odor and VOC emissions during construction. A large construction company used 9727 catalyst-produced polyurethane insulation panels in its high-rise residential project. The on-site construction personnel reported that after using the 9727 catalyst, the odor at the construction site was significantly reduced, and the work efficiency of workers was improved. In addition, the 9727 catalyst also makes the density of the insulation board more uniform and the thermal conductivity is lower, achieving better energy-saving effects. <\/p>\n 4. Medical Equipment<\/h4>\nMedical equipment has extremely high requirements for the safety and environmental protection of materials. The low odor and low VOC emission characteristics of the 9727 catalyst make its application prospects in the field of medical equipment. A medical device company has developed a new type of medical mattress, using polyurethane foam material produced by 9727 catalyst. Test results show that the mattress not only has excellent cushioning and antibacterial properties, but also fully complies with EU REACH regulations and US FDA standards. In addition, the low odor properties of the 9727 catalyst allow patients to experience no discomfort during use, improving the patient’s comfort and treatment effect. <\/p>\n 5. Sports Goods<\/h4>\nSports products such as sports shoes, yoga mats, etc. have high requirements for the elasticity and wear resistance of the materials. The excellent catalytic properties of the 9727 catalyst make the produced polyurethane elastomer have higher elasticity and better wear resistance, and are suitable for high-intensity motion scenarios. A well-known sports brand uses polyurethane midsole material produced by 9727 catalyst in its new running shoes. Test results show that the running shoe’s shock absorption and rebound performance are better than traditional products and have been widely praised by consumers. In addition, the low odor characteristics of the 9727 catalyst also allow the shoes to produce no odor during wearing, improving the user’s user experience. <\/p>\n Future development trends and challenges<\/h3>\nWith global emphasis on environmental protection and sustainable development, low odor and low VOC emission catalysts will become the development trend of the polyurethane industry. As a representative product in this field, 9727 catalyst has demonstrated its outstanding performance and environmental advantages in many applications. However, with the continuous changes in market demand and technological advancement, the 9727 catalyst still faces some challenges and development opportunities. <\/p>\n 1. Technological innovation<\/h4>\nFuture catalyst research and development will pay more attention to technological innovation to meet the needs of different application scenarios. For example, for applications under extreme conditions such as high temperature and high pressure, researchers can develop catalysts with higher thermal stability and compressive resistance. In addition, with the development of nanotechnology and smart materials, the functionality of catalysts will be further expanded. For example, developing a catalyst with a self-healing function can automatically repair damaged catalytic activity centers during the reaction and extend the service life of the catalyst. <\/p>\n 2. Environmental protection requirements<\/h4>\nAs the increasingly stringent environmental protection regulations of various countries, the environmental protection performance of catalysts will become an important factor in corporate choice. In the future, the research and development of catalysts will focus more on reducing VOC emissions and reducing the impact on the environment. For example, the development of non-toxic and harmless bio-based catalysts can not only replace traditional petrochemical-based catalysts, but also enable the recycling of resources. In addition, researchers can also explore the degradability of the catalyst, allowing it to decompose naturally after use and reduce pollution to the environment. <\/p>\n 3. Cost control<\/h4>\nAlthough the 9727 catalyst performs excellently in environmental performance and catalytic efficiency, its cost is still high. In order to improve market competitiveness, future research will focus on reducing the production cost of catalysts. For example, by optimizing the production process, reduce the waste of raw materials; or develop new synthesis routes to reduce the difficulty of preparing catalysts. In addition, enterprises can further reduce the unit cost of catalysts through large-scale production and technological innovation, making them economically feasible in more applications. <\/p>\n 4. Emerging Applications<\/h4>\nWith the widespread application of polyurethane materials in emerging fields, the demand for catalysts is also expanding. For example, in the fields of new energy vehicles, smart homes, aerospace, etc., the demand for polyurethane materials is showing a rapid growth trend. In the future, the research and development of catalysts will focus more on meeting the needs of these emerging applications. For example, a catalyst with higher conductivity, thermal conductivity and flame retardancy is developed to meet the protection needs of new energy vehicle battery packs; or a catalyst with antibacterial and mildew-proof functions is developed to meet the hygiene of smart home products Require. <\/p>\n 5. International Cooperation<\/h4>\nIn the context of globalization, international cooperation will becomeAn important way to develop chemical agents. Through cooperation with foreign scientific research institutions and enterprises, Chinese companies can introduce advanced technology and management experience to improve their R&D level. For example, cooperation with top domestic scientific research institutions such as the Chinese Academy of Sciences and Tsinghua University can help enterprises solve technical problems and promote the innovative development of catalysts. In addition, through cooperation with internationally renowned companies such as BASF and Huntsman, Chinese companies can enter the international market faster and enhance the international influence of brands. <\/p>\n Conclusion<\/h3>\nTo sum up, as a high-efficiency catalyst with low odor and low VOC emissions, 9727 catalyst has been widely used in many fields due to its excellent catalytic performance and environmental protection characteristics. Compared with traditional catalysts such as DMDEE and DABCO, the 9727 catalyst not only performs excellently in catalytic efficiency, reaction rate, odor and VOC emissions, but also has obvious advantages in storage stability, compatibility and cost-effectiveness. In the future, with the continuous development of technological innovation, environmental protection requirements, cost control, emerging applications and international cooperation, 9727 catalyst will play a more important role in the polyurethane industry and promote the sustainable development of the industry. <\/p>\n In short, 9727 catalyst is not only the leader in the current market, but also the direction of future green chemistry development. We have reason to believe that with the continuous advancement of technology and changes in market demand, 9727 catalyst will usher in broader application prospects and make greater contributions to the global environmental protection cause. <\/p>\n","protected":false,"gt_translate_keys":[{"key":"rendered","format":"html"}]},"excerpt":{"rendered":" Overview of low-odor reaction 9727 catalyst The low odo…<\/p>\n","protected":false,"gt_translate_keys":[{"key":"rendered","format":"html"}]},"author":1,"featured_media":0,"comment_status":"closed","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":[],"categories":[6],"tags":[15804],"gt_translate_keys":[{"key":"link","format":"url"}],"_links":{"self":[{"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/posts\/54011"}],"collection":[{"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/comments?post=54011"}],"version-history":[{"count":0,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/posts\/54011\/revisions"}],"wp:attachment":[{"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/media?parent=54011"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/categories?post=54011"},{"taxonomy":"post_tag","embeddable":true,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/tags?post=54011"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}} |